

ALS beamline 12.2.2

Martin Kunz

2006 Calipso Review

Outline:

- Beamline layout.
- Experimental station.
- Diffraction experiments: Resistive heating.
- X-ray absorption imaging (Walker/Walter).
- Viscosity measurements (Grocholski/Jeanloz).
- Radial diffraction (Merkel/Lowell/Wenk).
- Development: EXAFS.
- Development: In situ laser heated radial diffraction.
- Development: Upgrade end-station 1.

Beamline 12.2.2: Layout

Beamline 12.2.2: Flux

End station 1:

Beam position monitor 1

Filters

Shutter and 2nd bpm

4 pairs of Slits (also virtual source for K-B-mirrors)

K-B-mirrors:

Virtual source is re-imaged on sample position of ES-2.

Beam size $\sim 10 \ \mu m \ x \ 10 \ \mu m$ (theoretical).

No tails thanks to off-set slits around virtual source.

2 Si mirrors with Rh (~40 Å) on Pt (~ 250 Å) on Cr (~ 50 Å)

nominal object 1067 to horizontal mirror

CdWO₃cintillator ~132.86mm from KB box.

KB pitches& translations optimized earlier with different imaging system.

Field of view is 0.920 mm and image has 512x512 pixels => 1.80 microns/pixel

17keV

100 µm pinhole mounted immediately in front of carbon mirrors removes scatter-tails from KB-mirrors.

=> Virtually no gasket signal even for very small gasket-holes.

Virtual Source: 20 (h) x 60 (v) mm². Focused spot: 13 x 13 mm².

KB-Flux comparison

2006 Calipso Review: Diffraction experiments

Resisitive heating:

2006 Calipso Review: Diffraction experiments

Resisitive heating:

2006 Calipso Review: Diffraction experiments

Resisitive heating:

Zircon (ZrSiO₄):

X-ray imaging as a complementary tool.

- Measuring viscosity of liquid with a rolling sphere (Jeanloz group).
- Measuring shift of eutectic / peritectic with P (Walker and Walter).

Xray-absorption imaging experiment using the Apogee camera

Observed absorption in FeS

50 kbars

Melting shows erosion

Observed absorption in FeO

2006 Calipso Review: Rolling Sphere Imaging

2006 Calipso Review: Radial Diffraction

Radial x-ray diffraction geometry (Sebastien Merkel, UCB)

- Diffraction in radial geometry
- Diffraction patterns as a function of azimuthal angle δ
- One image for each deformation / pressure step
- Detector: image plate or CCD
- Data collection time: 30s (CCD) to 10mn (image plate)

2006 Calipso Review: Radial Diffraction

Merkel and Yagi, RSI (2005

2006 Calipso Review: Radial Diffraction.

Deformation mechanisms

2006 Calipso Review: Radial Diffraction.

Elasticity and stress

EXAFS

Monochromator rocking curve feedback system to be completed by end of January.

Remote controlled DAC for in-situ laser heating of radial diffraction.

Installation of single crystal goniometer on ES-1:

Specifications:

- 4-circle goniometer with full Eulerian cradle.
- small and sturdy design to fit in available space and allowing mounting of DAC's.
- total sphere of confusion <= 0.01 mm radius with DAC mounted.
- vertical diffraction plane to account for horizontal polarization of synchrotron beam.
- Bruker CCD detector controlled through WinView. Possibility to add / exchange with single point detector.
- omega range > +- 40°.
- $-2-\theta$ range > +- 35°.
- Controller & driver: Newport XPS.
- flexibility wrt application-software.

Further points to consider:

- Potential of technique can only be fully exploited, if gas loading (He or Ne) is available!
- Software needs to be flexible AND user-friendly. Ideally experiment can be run by user-preferred software.
- capability to expand to other ancillary equipment (heater, heatable DAC) .
- beam-size.

Resources needed.

- **Finances** for purchase of goniometer: available ~ 70 k\$ from NSF- MRI (Nicol Dera).
- **Mechanical** support for installation (Titus / Celestre / Morrison ALS).
- **Electronic** support for installation (Bell ALS).
- Controller software (EPICS) support (Mark Rivers, GSECars).
- **Detector** interfacing: Ed Domning / Rich Celestre ALS, Mark Rivers GSECars.
- Application software (IDL based) support (Przemek Dera, GSECars. R. Angel VPI (?)).
- Beamline support (Kunz COMPRES / ALS).

